Ataxin-3 with an altered conformation that exposes the polyglutamine domain is associated with the nuclear matrix.
نویسندگان
چکیده
Spinocerebellar ataxia type-3 or Machado-Joseph disease (SCA3/MJD) is a member of the CAG/polyglutamine repeat disease family. In this family of disorders, a normally polymorphic CAG repeat becomes expanded, resulting in expression of an expanded polyglutamine domain in the disease gene product. Experimental models of polyglutamine disease implicate the nucleus in pathogenesis; however, the link between intranuclear expression of expanded polyglutamine and neuronal dysfunction remains unclear. Here we demonstrate that ataxin-3, the disease protein in SCA3/MJD, adopts a unique conformation when expressed within the nucleus of transfected cells. The monoclonal antibody 1C2 is known preferentially to bind expanded polyglutamine, but we find that it also binds a fragment of ataxin-3 containing a normal glutamine repeat. In addition, expression of ataxin-3 within the nucleus exposes the glutamine domain of the full-length non-pathological protein, allowing it to bind the monoclonal antibody 1C2. Fractionation and immunochemical experiments indicate that this novel conformation of intranuclear ataxin-3 is not due to proteolysis, suggesting instead that association with nuclear protein(s) alters the structure of full-length ataxin-3 which exposes the polyglutamine domain. This conformationally altered ataxin-3 is bound to the nuclear matrix. The pathological form of ataxin-3 with an expanded polyglutamine domain also associates with the nuclear matrix. These data suggest that an early event in the pathogenesis of SCA3/MJD may be an altered conformation of ataxin-3 within the nucleus that exposes the polyglutamine domain.
منابع مشابه
Examination of Ataxin-3 (atx-3) Aggregation by Structural Mass Spectrometry Techniques: A Rationale for Expedited Aggregation upon Polyglutamine (polyQ) Expansion*□S
Expansion of polyglutamine stretches leads to the formation of polyglutamine-containing neuronal aggregates and neuronal death in nine diseases for which there currently are no treatments or cures. This is largely due to a lack in understanding of the mechanisms by which expanded polyglutamine regions contribute to aggregation and disease. To complicate matters further, several of the polygluta...
متن کاملAtaxin-3 is transported into the nucleus and associates with the nuclear matrix.
It has been reported that the ataxin-3 protein containing a polyglutamine sequence in the pathological range (61-84Q) is localized within the nucleus of neuronal cells, whereas ataxin-3 with a normal repeat length (12-37Q) is predominantly a cytoplasmic protein. In this study, the subcellular localization of the full-length ataxin-3 protein with a glutamine sequence in the normal range (Q3KQ22)...
متن کاملRecruitment and the Role of Nuclear Localization in Polyglutamine-mediated Aggregation
The inherited neurodegenerative diseases caused by an expanded glutamine repeat share the pathologic feature of intranuclear aggregates or inclusions (NI). Here in cell-based studies of the spinocerebellar ataxia type-3 disease protein, ataxin-3, we address two issues central to aggregation: the role of polyglutamine in recruiting proteins into NI and the role of nuclear localization in promoti...
متن کاملPromyelocytic leukemia protein is redistributed during the formation of intranuclear inclusions independent of polyglutamine expansion: an immunohistochemical study on Marinesco bodies.
Marinesco bodies (MBs) are ubiquitinated intranuclear inclusions observed in nigral pigmented neurons. They increase in number during aging, and their formation is considered to represent a cellular reaction to stress, but is not always associated with neuronal degeneration. We conducted immunohistochemical studies on MBs abundant in myotonic dystrophy brains and compared their nature with that...
متن کاملFocal distortion of the nuclear envelope by huntingtin aggregates revealed by lamin immunostaining
Huntington's disease is an autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine repeat tract in the huntingtin protein. Polyglutamine-expanded huntingtin forms intranuclear as well as perinuclear inclusion bodies. Perinuclear aggregates formed by polyglutamine-expanded proteins are associated with a characteristic indentation of the nuclear envelope. We exami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 8 13 شماره
صفحات -
تاریخ انتشار 1999